Chemistry Syllabus for JEE Main Examination:

Section- A : Physical Chemistry

UNIT 1: Some Basic Concepts In Chemistry
Matter and its mature, Dalton’s atomic theory; Concept of atom, molecule, element and compound; Physcial quantities and their measurements in Chemistry, precision and accuracy, significant¬† figures, S.I. Units, dimensional analysis; Laws of chemical combination; Atomic and molecular masses, mole concepts, molar mass, percentage composition, empirical and molecular formulae; Chemical equations and stoichiometry.

UNIT 2: States of Matter
Classification of matter into solid, liquid and gaseous states.

Gaseous State:
Measurable properties of gases: Gas laws – Boyle’s law, Charle’s law, Graham;s las of diffusion.
Avogadro’s law, Dalton’s law of partical pressure; Concept of Absolute scale of temperature; Ideal gas equation; Kinetic theory of gases (only postulates); Concept of average, root mean square and most probable velocities; Real gases, deviation from Ideal behaviour, compressibility factor and van der waals equation.

Liquid State:
Properties of liquids – vapour pressure, viscosity and surface tension and effect of temperature on them (qualitative treatment only).

Solid State:
Classification of solids: molecular, ionic, covalent and metallic solids, amorphous and crystalline solids (elementary idea); Bragg’s Law and its applications; Unit cell and lattices, packing in solids (fcc, bcc and hcc lattices), Voids, calculations involving unit cell parameters, imperfection in solids; Electrical and magnetic Properties

UNIT 3: Atomics Structure
Thomson and Rutherford atomic models and their limitations; Nature of electromagnetic radiation, photoelectric effect; Spectrum of hydrogen atom, Bohr model of hydrogen atom – its postulates, derivation of the relations for energy of the electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, de-Broglie’s relationship, Heisenberg uncertainty principle.

Elementary ideas of quantum mechanics, quantum mechanical model of atom, its important features. Concept of atomic orbitals as one electron wave functions: Variations of w and w2 with r for 1s and 2s orbitals; various quantum numbers (principal, angular momentum and magnetic quantum numbers) and their significance; shapes of s,p and d – orbitals, electron spin and spin quantum number; Rules for filling electrons in orbitals – aufbau principle, Pauli’s exclusion principle and Hund’s rule, electronic configuration of elements, extra stability of half-filled and completely filled orbitals.

UNIT 4: Chemical Bonding and Molecular Structure
Kossel – Lewis approach to chemical bond formation, concept of ionic and covalent bonds.

Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds; calculation of lattice enthalpy.

Covalent Bonding : Concept of electronegativity, Fajan’s rule, dipole moment; Valence Shell Electron Pair Repulsion (VSEPR) theory and shapes of simple molecules.

Quantum mechanical approach to covalent bonding: Valence bond theory – Its important features, concept of hydridization involving s,p and d orbitals: Resonance.

Molecular Orbital Theory – Its important features LCAOs, types of molecular orbitals (bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of homonuclear diatomic molecules, concept of bond order, bond length and bond energy.

Elementary idea of metallic bonding. Hydrogen bonding and its applications.

UNIT 5: Chemical Thermodynamics
Fundamentals of thermodynamics: System and surroundigs, extensive and intensive properties state functions, types of processes.

First law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat capacity, molar heat capacity; Hess’s law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydroation, ionization and solution.

Second law of thermodynamics – Spontaneity of processes; AS of the universe and AG of the system as criteria for spontancity, AG (Standard Gibbs energy change) and equilibrium constant.

UNIT 6: Solutions
Different methods for expressing concentration of solution-molality, molarity, mole fraction, percentage (by volume and mass both), vapour pressure of solutions and Raoult’s Law – Ideal and non-ideal solutions, vapour pressure – composition, plots for ideal and non-ideal solutions; Colligative properties of dilute solutions – relative lowering of vapour pressure, depression of freezing point, elevation of boiling point and osmotic pressure; Determination of molecular mass using colligative properties; Abnormal value of molar mass, van’t Hoff factor and its significance.

UNIT 7: Equilibrium
Meaning of equilibrium, concept of dynamic equilibrium.

Equilibrium involving physical processes: Solid-liquid, liguid-gas and solid-gas equilibria, Henry’s law, general characteries of equilibrium involoving physical processes.

Equilibrium involving chemical processes: Law of chemical equilibrium, equilibrium contants (Kp and Kc) and their significance, significance of G & i Go in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catelyst; LeChatelier’s principle.

Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts of acids and bases (Arrhenius, Bronsted – Lowry and Lewis) and their ionization, acid – base equilibria (including multistage ionization) and ionization constants,ionization of water, pH scale, common ion effect, hydrolysis of salts and pH of their solutions, solubility of sparingly soluble salts and solubility products, buffer solutions.

UNIT 8: Redox Reactions and Electro-Chemistry
Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for assigning oxidation number, balancing of redox reactions.

Electrolytic and metallic conduction, conductance in electrolytic solutions, molar conductivities and their variation with concentration: Kohlrausch’s law and its applications.

Electrochemical cells – Electrolytic and Galvanic cells different types of electrodes, electrode potentials including standard electrode potential, half – cell and cell reactions, emf of a Galvanic cell and its measurement; Nernst equation and its applications; Relationship between cell postential and Gibbs’ energy change; Dry cell and lead accumulator, Fuel cells

UNIT 9: Chemical Kinetics
Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature, pressure and catelyst; elementary and complex reactions, order and molecularity of reactions, rate law, rate constant and its units, differential and integral forms of zero and first order reactions, their characteristics and half – lives, effect of temperature on rate of reactions – Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous reactions (no derivation).

UNIT 10: Surface Chemistry
Adsorption – Physisorption and chemisorption and their characteristics, factors affecting adsorption of gases on solids – Freundlicj and Langnuir adsorption isotherms, adsorption from solutions.

Catalysis – Homogeneous and heterogeneous, activity and selectivity of solid catelysts, enzyme catalysis and its mechanism.

Collodial state – Distinction among true solutions, colloids and suspensions, classification of colloids – lyophilic, lyophobic; multimolecular, macromolecular and associated colloids – Tyndall effect, Brownian movement, electrophoresis, dialysis, coagulation and flocculation; Emulsions and their characteristics.

Section- B : Inorganic Chemistry

UNIT 11: Classification of Elements and Periodicity in Properties
Modern periodic law and present form of the periodic table, s,p,d and f block elements, periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states and chemical reactivity

UNIT 12: General Principals and Processes of Isolation of Metals
Modes of occurrence of elements in nature, minerals, ores: Steps involved in the extraction of metals – concentration, reduction (chemical and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and electrochemical principles involved in the extraction of metals.

UNIT 13: Hydrogen
Position of hydrogen in periodic table, isotopes, preparation, properties and uses of hydrogen:
Physical and chemical properties of water and heavy water; Structure, preparation, reactions and uses of hydrogen peroxide; Classification of hydrides – ionic, covalent and interstitial; Hydrogen as a fuel.

UNIT 14: S-Block Elements (Alkali and Alkaline Earth Metals)
Group – 1 and 2 Elements.
General introduction, electronic configuration and general trends in physical and chemical properties of elements, anomalous properties of the first element of each group, diagonal relationships.

Preparation and properties of some important compounds – sodium carbonate and sodium hydroxide and sodium htydrogen carbonate; Industrial uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg and Ca.

UNIT 15: P-Block Elements
Group – 13 to Group 18 Elements.
General Introduction: Electronic configuration and general trends in phsyical and chemical properties of elements across the periods and down the groups; unique behaviour of the first element in each group.

Groupwise study of the p-block elements.

Group – 13.
Preparation, properties and uses and boron and aluminium, Structure, properties and uses of borax, boric acide, diborne, boron trifluoride, aluminium chloride and alums.

Group – 14.
Tendency for catenation: Structure, properties and uses of Allotropes and oxides of carbon, silicon tetrachloride, silicates, zeolites and silicones.

Group – 15.
Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus; Preparation, properties, structure and uses of ammonica, nitric acid, phosphine and phosphorus halides, (PCI3, OCI5 ), Structures of oxides and oxoacids of nitrogen and phosphorus.

Group – 16.
Preparation, properties, structures and uses of ozone; Allotropic forms of sulphur, Preparation, properties, structures and uses of sulphuric acid (including its industrial preparation); Structures of oxoacides of sulphur.

Group – 17.
Preparation, properties and uses of hudochloric acid; Trends in the acidic nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids of halogens.

Group – 18.
Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.

UNIT 16: d-and f-Block Elements
Transition Elements.
General introduction, electronic configuarion, occurrence and characteristics, general trends in properties of the first row transition elements – physical properties, ionization enthalpy, oxidation state, atomic radii, colour, catalytic behaviour, magnetic properties, complex formation, interstitial compounds, alloy formation; Preparation, properties and uses of K2 Cr2 O7 and KMnO4

Inner Transition Elements.
Lanthanoids – Electronic configuration, oxidation state and lanthanoids contraction. Aetinoids – Electronic configuration and oxidation states.

UNIT 17: Co-ordination Compounds
Introduction to co-ordination compoounds, Werner’s theory; ligands, co-ordination number, denticity, chelation; IUPAC nomenclature of mononuclear co-ordination compounds, isomerism, Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and magnetic properties; Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).

UNIT 18: Environmental Chemistry
Environmental pollution – Atmospheric, water and soil.
Atmospheric pollution – Tropospheric and Stratospheric.
Tropospheric pollutants – Gaseous pollutants: Oxides of carbon, nitrogen and sulphur, hydrocarbons; their sources, harmful effects and prevention: Green house effect and Global warming: Acid rain;
Particulate pollutants: Smoke, dust, smog, fumes, mist, their sources, harmful effects and prevention.
Stratospheric pollution – Formation and breakdown of ozone, depletion of ozone layer – its mechanism and effects.
Water Pollution – major pollutants such as, pathogens, organic water and chemical pollutants: their harmful effects and prevention.
Soil Pollution – Major pollutants such as: Pesticides (insecticides, herbicides and fungicides), their harmful effects anf prevention.
Strategies to control environmental pollution.

Section- C : Organic Chemistry

UNIT 19: Purification and Characterisation of Organic Compounds
Purification – Crystallization, sublimation, distillation, differential extraction and chromatography – principles and their applications.

Qualitative analysis – Detection of nitrogen, sulphur, phosphorus and halogens.

Quantitative analysis (basic principles only)- Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus.

Calculations of emprirical formulae and molecular formulae; Numerical problems in organis quantitative analysis.

UNIT 20: Some Basic Principles of Organic Chemistry
Tetravalency of carbon; Shapes of simple molecules – hybridization (s and p); Classification of organic compounds based on functional groups; and those containing halogens, oxygen, nitrogen and sulphur; Homologous series: Isomerism – structural and steroismerism.

Nomenclature (Trivial and IUPAC)
Covalent bond fission – Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nuclephiles.

Electronic displacement in a covalent bond
Inductive effect, electromeric effect, resonance and hyperconjugation.

Common types of organic reactions – Substitution, addition, elimination and rearrangement.

UNIT 21: Hydrocarbons
Classifications, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions.

Alkanes – Conformations: Sawhorse and Newman projections (of ethane): Mechanism of halogeneation of alkanes.

Alkenes – Geometrical isomerism; Mechanism of electrophilic addition; addition of hydrogen, halogens, water, hydrogen halides (Markownikoff’s and peroxide effect); Ozonolysis and polymerization.

Alkynes – Acidic character; Addition of hydrogen, halogens, water and hydrogen halides; Polymerization.

Aromatic hydrocarbons – Nomenclature, benzene – structure and aromaticity; Mechanism of electrophilic substitution; halogenation, nitrogen, friedel – Craft’s alkylation and acylation, directive influence of functional group in mono-substituted benzene.

UNIT 22: Organic Compounds Containing Halogens
General methods of preparation, properties and reactions, Nature of C-X bond; Mechanisms of substitution reactions.

Uses; Environmental effects of cholorgorm, iodoform freons and DDT.

UNIT 23: Organic Compounds Containing Oxygen
General methods of preparation, properties, reactions and uses.

Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism of dehydration.

Phenols: Acidic nature, electrophilic substitution reactions; halogenation, nitration and sulphonation, Reimer – Tiemann reaction.

Ethers: Structure.

Aldehyde and Ketones: Nature of carbonyl group; Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as – Nucleophilic additon reactions (additionof HCN, NH and its derivaties), Grignard reagent: Oxidation: reduction (Wolff Kishner and Clemmensen): acidity of a-hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical tests to distinguish between aldehydes and Ketones.

Acidic strength and factors affecting it.

UNIT 24: Organic Compounds Containing Nitrogen
General methods of preparation, properties, reactions and uses.

Amines: Nomenclature, classification, structure, basic character and identification of primary, secondary and tertiary amines and their basic character.

Diazonium Salts: Importance in synthetic organic chemistry

UNIT 25: Polymers
General introduction and classification of polymers, general methods of polymerization-addition and condensation, copolymerization; Natural and synthetic rubber and vulcanization; some important polymers with emphasis on their
monomers and uses – polythene, nylon, polyester and bakelite.

UNIT 26: Biomolecules
General introduction and importance of biomolecules.

CARBOHYDRATES – Classification: aldoses and ketoses; monosoccharides (glucose and fructose) and constituent monosaccharides of oligosacchorides (sucrose, lactose and maltose).

PROTEINS – Elementary Idea of a-amino acids, peptide bond, polypeptides; Proteins; primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.

VITAMINS – Classification and functions.

NUCLEIC ACIDS – Chemical constitution of DNA and RNA.
Biological functions of nucleic acids

UNIT 27: Chemistry in Everyday Life
Chemicals in medicines – Analgesis, tranquilizers, antiseptics, disinfectants, antimicrobials, antifertility drugs, antibiotics, antacids, antibhistamins – their meaning and common examples.

Chemicals in foods – Preservatives, artificial sweetening agents – common examples.

Cleansing agents – Soaps and detergents, cleansing action

UNIT 28: Principles Related to Practical Chemistry
Detection of extra elemets (N,S, halogens) in organic compounds: Detection of the following functional groups; hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyle and amino groups in organic compounds.

Chemistry involved in the preparation of the following:

Inorganic compounds: Mohr’s salt, potash alum.
Organic compounds: Acetanilide, Pnitroacetanilide, aniline yellow, iodoform.

Chemistry involved in the titrimetric excercies – Acides bases and the use of indicators, oxalicacide vs KMnO4 , Mohr’s sale vs KMnO4.

Chcemistry principles involved in the qualitative salt analysis